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Introducion

▶ f : N −→ C analytic function
▶ z∗ ∈ N fixed point f (z∗) = z∗

▶ Forward orbit

O(z) :=
{

z, f (z), f ◦2(z), . . . , f ◦n(z), . . .
}

f ◦n = f ◦ f ◦ . . . f ◦ f︸ ︷︷ ︸
n

▶ Conjugating by local biholomorphism ϕ

ϕ ◦ f ◦ ϕ−1
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Introduction

▶ Since conjugation preserves dynamics, we assume fixed point is at
the origin

▶ λ = f ′(0) is called the multiplier and is invariant under conjugation
▶ z ∈ N is a periodic point with period q of f if f ◦q(z) = z and

f ◦(q+1)(z) ̸= z
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Geometrically Attracting or
Repelling Fixed Points



Topologically attracting

Definition.

The fixed point z∗ of f is called topologically attracting if ∃ a
neighbourhood U on which the iterates f ◦n are defined and converge
uniformly to the constant map z 7−→ z∗.
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Topologically attracting and multiplier

Theorem.

Consider the function f (z) = λz + a2z2 + a3z3 + . . . with fixed point z∗ = 0.
Then the origin is topologically attracting iff |λ| < 1.
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Koenigs linerisation

Theorem.

For f (z) = λz + a2z2 + a3z3 + . . . such that |λ| /∈ {0, 1}, there exists a local
biholomorphic function ẑ = ϕ(z) in some neighbourhood N of 0 such that
the following diagram commute and ϕ(0) = 0

Here ϕ(z) = limn−→∞ f ◦n(z)/λn
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Basin of attraction

Definition.

The attraction basin A of a fixed point z∗ is the set of all points that
converge to z∗ under iterations of f

A(z∗) = {z0 | lim
n→∞

f ◦n(z0) = z∗}

The immediate basin A0 is the connected component of A that contains z∗.
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Global linearisation for a geometrically attracting fixed point

Theorem (Global linearisation).

Up to multiplication by a non-zero constant, there exists a unique local
biholomorphic map ϕ : A → C such that the following diagram commute
and ϕ(0) = 0.

We can prove this by defining ϕ(z) = λ−nϕr(f ◦n(z)) where n is the smallest
integer for which |f ◦n(z)| < r.
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Inverse of linearization and critical point

In this lemma consider f is a rational function with degree ≥ 2 over Ĉ and
the fixed point z∗ ∈ C so that the local behaviour is exactly the same as
before.

Lemma.

The local inverse in the last theorem ψε : Dε → A0 can be uniquely
analytically extended to some maximal open disc Dr as ψr : Dr → A0 with
ψr(0) = 0 and ϕ ◦ ψr(ẑ) = ẑ.

Furthermore, ψr can be continuously extended to the boundary ∂Dr and
there exists at least one critical point of f in the ψr(∂Dr).
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Attracting periodic orbit

Definition.

A periodic orbit is an orbit z0 → z1 → z2 → · · · such that zm = f ◦m(z0) = z0
for some integer m. A periodic orbit is called attracting if the derivative∣∣(f ◦m)′ (zk)

∣∣ < 1.

Note:
∣∣(f ◦m)′ (zk)

∣∣ is the same for all zk.

Definition.

Since each zk is a fixed point of f ◦m, they have corresponding immediate
basins. The immediate basin A0(O, f ) of a periodic orbit O is the union of
the immediate basins of each point in the orbit under f ◦m.
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Attracting periodic orbit and critical point

Theorem.

For f a nonlinear rational map, the immediate basin of every attracting
periodic orbit contains at least one critical point.

Idea of proof:
▶ f ◦m maps A0 (zj) into itself.
▶ f has no critical point =⇒ f ◦m no critical point.
▶ Basin of attraction of a attracting fixed point must contain a critical

point.
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Approximating attracting periodic orbit

Corollary.

Such a rational map f has only finitely many attracting periodic orbits.

A logarithm for approximating periodic orbit:
▶ Locate all critical points of the function
▶ Iteratively apply the function from the critical point.
▶ Observe if it converges to a periodic orbit.

Note: May fail for large period. e.g.f (z) = z2 − 1.5.
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Topologically Repelling

Definition.

The fixed point z∗ of f is called topologically repelling if for some
neighbourhood N of z∗, ∀z ∈ N and z ̸= z∗, ∃n ∈ N s.t. f ◦n (z) leaves N .
Here we call N a forward isolating neighbourhood of z∗.

Note: The only orbit that stays in N is the orbit of the fixed point z∗.
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Topologically repelling and multiplier

Theorem.

Consider the function f (z) = λz + a2z2 + a3z3 + . . . with fixed point z∗ = 0.
Then the origin is topologically repelling iff |λ| > 1.
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generlization of ψϵ in repelling case

Theorem.

For a repelling fixed point of f , there exists an entire bijective function ψ
such that ψ(0) = 0 and ψ conjugates f to the linear map ẑ 7→ λẑ. Moreover,
ψ is unique (up to multiplication by a non-zero constant).

Idea of proof :

Choose the smallest n such that z/λn ∈ Dε(0), then define
ψ(z) = f ◦n(ψε(z/λn)).

Geometrically Attracting or Repelling Fixed Points 17/63



Superattracting Fixed
Points



Introduction

Definition.

A holomorphic function f : C → C has a super-attracting fixed point at
z∗ ∈ C, if f (z∗) = z∗ and f ′(z∗) = 0.

WLOG fixed point at 0, we can write:

f (z) = apzp + ap+1zp+1 · · · =
∞∑

k=p

akzk (1)
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Bottcher’s Theorem

Theorem.

Let f be as in Eq. 1. Then there exists a local holomorphic change of
coordinates ẑ = ϕ(z), such that ϕ(0) = 0 and ϕ′(0) = 1, where
ϕ(f (z)) = ϕ(z)p locally. Furthermore, ϕ is unique up to multiplication by a
(p − 1)th root of unity.

▶ existence and uniqueness of map ϕ : C → C

▶ ϕ(f (z)) = ϕ(z)p

▶ derivative at 0 is 1
▶ existence of inverse ψ
▶ ϕ ◦ f ◦ ϕ−1(z) = zp
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Inverse of the change of coordinates

Theorem.

Let f and ϕ be as in Theorem 3.1 and let ψr be local inverse of ϕ. Then there
exists a unique open disc Dε around 0 of maximal radius 0 < ε ≤ 1 such
that ψr extends holomorphically to a map ψ from the disc into the
immediate basin A0 of 0. If ε = 1, then ψ maps the unit disc
biholomorphically onto A0 and 0 is the only critical point of f in the basin.
On the other hand if ε < 1 then there is at least one other critical point of f
in A0, lying on the boundary of ψ(Dε).

▶ Holomorphic extension of ψ, to:
1. Another critical point, ψ valid on Dε, critical point on boundary of image

of Dε under the map ψ.

2. No other critical point, ψ biholomorphism from D1 to immediate basin.
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First Example

Example.

Take:

f (z) = z2

1 − 2z2 ≈ z2 + 2z4 + 4z6 . . .

By our Theorem 3.2 the extension of the inverse of the map valid in whole
of D1. Inverse given by:

ψ(ẑ) = ẑ
1 + ẑ2

We then see:

f (ψ(ẑ)) = f
(

ẑ
1 + ẑ2

)
=

ẑ2

1 + ẑ4 = ψ(ẑ2)
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Applications to Polynomial Dynamics

Now we will be working on the Riemann Sphere, let:

f (z) = adzd + ad+1zd+1 · · ·+ a1z + a0 (2)

▶ WLOG we can assume f to be monic
▶ super-attracting fixed point at ∞

Superattracting Fixed Points 23/63



Fixed point at ∞

Let ζ = 1
z . Then:

G(ζ) =
1

f (1/ζ)

Then since f is monic, near ∞, f (z) ≈ zd. By that we have near 0,

G(ζ) ≈ 1
zd = ζd

Then from Theorem 3.1 we can get a map α, which conjugates G to ẑ 7→ ẑd.
Let:

ϕ(z) = 1
α( 1

z )

which maps some neighbourhood of ∞ biholomorphically onto another
neighbourhood of ∞. We then have:

ϕ(f (z)) = ϕ(z)d
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Example

Example.
Let’s take the map:

f (z) = z2 − 2

Super-attracting fixed point at ∞. Let ζ = 1/z and get map G(ζ):

G(ζ) =
1

f
(

1
ζ

) =
ζ2

1 − 2ζ2

For G we had the local inverse β(ẑ) = ẑ
1+ẑ2 , here we have:

ψ(ẑ) = 1
β(1/ẑ) = ẑ + 1

ẑ

For verification we find:

f
(

ẑ + 1
ẑ

)
= ẑ2 +

1
ẑ2 = ψ(ẑ2)
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Parabolic Fixed Points



Attraction vectors

f (z) = λz + µzp+1 + . . .

▶ When λ = 1, fixed point exhibits both attractive and repulsive
properties.

▶ Consider wanting for α ∈ R+ (non-constant), f (ε) = αε, i.e. an
infinitesimal vector on which f acts as scaling.

▶ For λ = 1, this has solutions εp = (α− 1)/µ
▶ attraction vectors vp

− = −1/(pµ)

▶ repulsion vectors vp
+ = +1/(pµ)

▶ vj = v0 exp(j/p · πi) repulsion for even j, attraction for odd j.
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Attraction vectors

Figure: Attraction and repulsion vectors, basins where p = 3, µ ∈ R>0
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Attraction vectors

This intuition is formalized in the following results.

Theorem.

Let f be a holomorphic function as with λ = 1. Let z0 be such that the
sequence zn = f ◦n(z0) −→ 0 but ∀n, zn ̸= 0. Then, for some attraction vector
vj satisfying vp

j = −1/(pµ),

lim
n−→∞

n1/pzn = vj

i.e. zn ∼ vj/n1/p asymptotically. zn is said to tend to 0 in the direction of vj.

Corollary.

Let z0 be such that the sequence zn =
(
f −1)◦n

(z0) −→ 0 but ∀n, zn ̸= 0.
Then, for some repulsion vector vj of f satisfying vp

j = 1/(pµ), zn ∼ vj/n1/p.
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Rotational parabolic points

We have sneakily been setting λ = 1. The following result justifies
“WLOG λ = 1”.

Definition.

Let v be a complex number.
▶ If there exists a sequence zn = f ◦n(z0) −→ 0 (but ∀n, zn ̸= 0) with a

subsequence znk such that arg znk −→ arg v, then v is called an
attraction vector for f .

▶ If there exists a sequence zn =
(
f −1)◦n

(z0) −→ 0 (but ∀n, zn ̸= 0) with
subsequence znk such that arg znk −→ arg v, then v is called an
repulsion vector for f .

Theorem.

The attraction vectors of f are the same as the same as those of f ◦r, and
their number is a multiple of r.
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Attraction basins

▶ A specialized “directional” notion of an attraction basin is thus
needed for our purposes.

▶ Similarly, the notion of a petal acts as a directional notion of a
neighbourhood of a fixed point.
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Basins and petals

Definition.

The basin of attraction Av for an attraction vector v is defined as the set of
points z such that f ◦n(z) −→ 0 in the direction of v. The immediate basin
of attraction A0

v is defined as the unique connected component of Av that
is closed under f .

Definition.

Where f is injective on some neighbourhood N of its fixed point, an open
set P ⊆ N is called an attracting petal for f along attraction vector v if

1. P is closed under f .

2. P ⊆ Av

3. Any orbit f ◦n(z0) converging to 0 along v is eventually in P.
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Basins and petals

Basic expected results on attraction basins and neighbourhoods transfer
to our new definitions.

Lemma.

The attraction basin is open.

Lemma.

The basins of attraction Av are contained in the Fatou set of f , while their
boundaries ∂Av are contained in the Julia set.

Lemma.

Where f is a non-linear rational map with parabolic fixed point 0 and
multiplier λ = 1:

1. each immediate basin of 0 contains at least one critical point of f .

2. each basin contains exactly one petal Pmax that maps injectively onto
some right half-plane under ϕ and is maximal with respect to this
property.

3. Pmax has at least one critical point of f on its boundary.
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Abel linearization

▶ ϕ(f (z)) = ϕ(z) is not a local homeomorphism!
▶ Better idea to find a linearization: take inspiration from the

“inherent structure on the petal”. ϕ(f (z)) = ϕ(z) + 1.

Theorem (Parabolic linearisation theorem).

Given an attracting or repelling petal P, there exists a unique (up to
composition on the left with translation) conformal embedding ϕ : P → C
called a Fatou co-ordinate on P such that, for all z ∈ P ∪ f −1(P), we have:

ϕ(f (z)) = ϕ(z) + 1
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Abel linearization

▶ Does not immediately suffice for a normal form
▶ Can “paste” linearization of each petal together – Ecalle-Voronin

classification
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Irrationally Indifferent
Fixed Points



Local Linearisation

λ = e2πiξ where ξ ∈ [0, 1) is irrational.

Definition (Locally linearisable).

The function f above is said to be locally linearisable if there is a local
biholomorphic map ψ which conjugates f to a linear map:(

ψ−1 ◦ f ◦ ψ
)
(z) = λz, (3)

for all z in some neighbourhood of the origin.
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We say an irrationally indifferent fixed point is a Cremer point if there is
no local linearisation of f around the fixed point. A connected component
of the Fatou set on which f is conjugate to a rotation of the unit disc is
called a Siegel disc.

Figure: Example of Siegel Disc, in white, in filled Julia set. Here, the cyan, yellow
and magenta depict orbits of points nearby the origin
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Main Theorems:
▶ Cremer’s Non-Linearisation Theorem
▶ Siegel’s Linearisation Theorem
▶ Postcritical Closure
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Cremer’s Non-linearization Theorem

Theorem.

(Cremer, 1938) Given λ ∈ C on the unit circle and d ≥ 2, if the sequence
dq√1/ |λq − 1| is unbounded as q −→ ∞, no fixed point with multiplier λ of

a rational function of degree d can be locally linearisable.
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Sketch Proof Cremer’s Theorem

Case when
f (z) = zd + · · ·+ λz,d ≥ 2

▶ f oq(z) = zdq
+ · · ·+ λqz

▶ Fixed points of f oq satisfy the polynomial zdq
+ · · ·+ (λq − 1)z = 0.

Then
dq−1∏
j=1

|zq(j)| = |λq − 1|

▶ |λq − 1| < 1 =⇒ ∃ jq s.t. 0 < |zq(jq)| < |λq − 1|1/dq

▶ Sequence (qk)k≥1 where

|λqk − 1|−1/dqk −→ ∞

=⇒ |λqk − 1|1/dqk −→ 0

▶ Every neighbourhood of the origin has infinitely many periodic points
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Siegel’s Linearization Theorem

Definition.

For ξ ∈ R, we say ξ is Diophantine of order ≤ κ if ∃ ε > 0 such that∣∣∣∣ξ − p
q

∣∣∣∣ > ε

qκ

for any rational p
q

Certainly Diophantine of order ≤ κ =⇒ Diophantine of order ≤ κ+ 1

Lemma.

With ξ as above, ξ is Diophantine of order ≤ κ⇐⇒ there exists M > 0 such
that ∀ q ∈ Z≥1

1/ |λq − 1| < Mqκ−1
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Siegel’s Linearization Theorem

Theorem.

If the angle ξ is Diophantine of any order, then any holomorphic germ with
multiplier λ = e2πiξ is locally linearisable. Hence, if there exists M > 0 and
k ∈ N such that ∀ q ∈ Z≥1

1/ |λq − 1| < Mqk

then any holomorphic function with a fixed point of multiplier λ is locally
linearisale.

Corollary.

In terms of the Lebesgue measure on [0, 1), almost every ξ has the property
that any holomorphic function with fixed point of multiplier e2πiξ is locally
linearizable.
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Generic vs Lebesgue Almost Everywhere

▶ Cremer: for a generic choice of angle ξ, there exists a holomorphic
function with fixed point of multiplier λ = e2πiξ which is not locally
linearizable.

▶ Siegel: for almost every angle ξ, any holomorphic function with fixed
point of multiplier λ = e2πiξ is locally linearizable.

A linguist would be shocked to learn that if a set is not closed this does not
mean that it is open, or again that “E is dense in E” does not mean the
same thing as “E is dense in itself”

- John Edensor Littlewood (1885–1977)
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Siegel’s Linearisation Theorem

Theorem (Siegel 1942).

If ξ is Diophantine of any order, then every germ of a holomorphic map
with fixed point of multiplier λ = e2πiξ is locally linearisable.

Theorem (Quadratic Siegel discs exist).

For Lebesgue-almost all irrational λ ∈ R/Z, fλ(z) = λz + z2 has a Siegel
disc about the origin.

This is strictly weaker than Siegel (1942).
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Theorem (Riemann mapping theorem).

Let U ⊂ C be a simply connected domain. Then for every z0 ∈ U there is a
unique conformal isomorphism ϕ : U → D to the unit disc such that

ϕ(z0) = 0 and ϕ′(z0) > 0

Definition (Conformal radius).

The conformal radius of U as viewed from z0 ∈ U is rad(U, z0) =
1

ϕ′(z0)
.

Intuition: requiring instead ϕ : U → Dr with ϕ′(0) = 1:

ϕ
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Definition (Conformal radius function).

For λ ∈ C, let σ(λ) be the conformal radius from 0 of the maximal
neighbourhood about 0 on which fλ is conjugate to a rotation.

If no such neighbourhood exists, set σ(λ) = 0.

Some properties:
▶ σ is non-constant (σ(0) = 0, σ(λ) > 0 for |λ| /∈ {0, 1}.)
▶ σ is upper semi-continuous on D.
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▶ When |λ| < 1, Koenigs linearisation:

ϕ

▶ η(λ) = ϕ(−λ/2). The function η(λ) is holomorphic on the punctured
disc. The singularity at the origin is removable — have σ(λ) = |η(λ)|
on D.

▶ Computation:

η(λ) = −λ4 +
λ2

16 +
λ3

16 +
λ4

32 +
9λ5

256 +
λ6

256 +
7λ7

256 + O(λ8)
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Lemma (F. and M. Riesz, 1916).

Let η : D → C be bounded and holomorphic. If for some constant c ∈ C the
set of ξ such that

lim
r↗1

η(re2πiξ) = c

has positive Lebesgue measure, then η is constant.

Proof (quadratic Siegel discs exist).

{ξ ∈ R/Z | z 7→ e2πiξz + z2 not linearisable at z = 0}

= {ξ ∈ R/Z | σ(e2πiξ) = 0} (by definition of σ)

= {ξ ∈ R/Z | lim
r↗1

η(re2πiξ) = 0} (upper semi-continuity)

is a set of Lebesgue measure zero.
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Siegel’s Linearisation Theorem

Strong version.

Theorem (Siegel 1942).

If ξ is Diophantine of any order, then every germ of a holomorphic map
with fixed point of multiplier λ = e2πiξ is locally linearisable.

Irrationally Indifferent Fixed Points · Siegel’s Linearisation Theorem 50/63



Schröder’s equation: given f , seek ψ such that f (ψ(z)) = ψ(λz)

C C

Dr Dr

f

ψ

w7→λw

ψ

Up to first order:
▶ ψ(z) = z +Ψ(z)
▶ f (z) = λz + F(z)

Attempt instead to solve F(z) = Ψ(λz)− λΨ(z):

Ψ0(z) =
∞∑

j=2

bj

λj − λ
zj

in which bj are coefficients of the series expansion F(z) =
∑∞

j=2 bjzj.
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Dr0 C

Dr1

f0=f

ψ−1
0

ψ0
f1=ψ0◦−1f◦ψ0
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Dr0 C

Dr1

Dr2

...
...

f0=f

ψ−1
0

ψ0
f1=ψ0◦−1f◦ψ0

ψ−1
1

ψ1
f2=ψ

−1
1 ◦ψ0◦−1f◦ψ0◦ψ1

ψ−1
2ψ2
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Dr0 C

Dr1

Dr2

...
...

Dr∞ Dr∞

f0=f

ψ−1
0

ψ0
f1=ψ0◦−1f◦ψ0

ψ−1
1

ψ1
f2=ψ

−1
1 ◦ψ0◦−1f◦ψ0◦ψ1

ψ−1
2

(hopefully)

ψ2

z 7→λz
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Analysis ensues:

▶ Diophantine: 1/ |λq − 1| < Mqκ

▶ |Fn| , |Ψn| −→ 0 fast enough
▶ fn tends to z 7→ λz; ψn becomes close to the identity.

▶ Carefully check:
▶ Each ψk, ψ

−1
k well-defined.

▶ r∞ > 0.

Irrationally Indifferent Fixed Points · Siegel’s Linearisation Theorem 55/63



Analysis ensues:
▶ Diophantine: 1/ |λq − 1| < Mqκ

▶ |Fn| , |Ψn| −→ 0 fast enough
▶ fn tends to z 7→ λz; ψn becomes close to the identity.

▶ Carefully check:
▶ Each ψk, ψ

−1
k well-defined.

▶ r∞ > 0.

Irrationally Indifferent Fixed Points · Siegel’s Linearisation Theorem 55/63



Analysis ensues:
▶ Diophantine: 1/ |λq − 1| < Mqκ

▶ |Fn| , |Ψn| −→ 0 fast enough
▶ fn tends to z 7→ λz; ψn becomes close to the identity.

▶ Carefully check:
▶ Each ψk, ψ

−1
k well-defined.

▶ r∞ > 0.

Irrationally Indifferent Fixed Points · Siegel’s Linearisation Theorem 55/63



What do Siegel discs look like? Compare results from previous sections:
▶ Attracting fixed point:

▶ at least one critical point in basin of
attraction.

▶ at least one critical point on boundary
of maximal linearising domain.

▶ Parabolic fixed point with λ = 1:
▶ at least one critical point in each

immediate basin.
▶ at least one critical point on boundary

of maximal attracting petal.
▶ Irrationally indifferent fixed point:

▶ are there critical points on the
boundary of Siegel discs?

Sometimes.†

† Herman M. 1985. Are there critical points
on the boundaries of singular domains?
Comm. Math. Phys., 99(4):593–612
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Definition.

The postcritical closure of f is the topological closure of the forward orbit
of the set of critical points:

P(f ) =
⋃
k>0

f ◦k(V(f ))

where
V(f ) = {z ∈ Ĉ | f ′(z) = 0}

Equivalently, P(f ) is the smallest forward-invariant closed set containing
all critical values of f .
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Theorem.

Each of the following sets is contained within P(f ):

▶ all (super-)attracting periodic orbits of f .
▶ all indifferent periodic orbits which lie within J (f ).
▶ the boundary of every period of rotation domains.

Sketch of proof. If |P(f )| < 3: special case. f is conjugate to z 7→ z±d.

Assume |P(f )| ≥ 3. Equip Q = Ĉ \ P(f ) with the Poincaré metric; apply
the Schwarz-Pick lemma to show that f ◦k expands distances on Q.
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Figure: Filled Julia set (grey) for ξ ≈ 0283 with forward orbit of critical point
(white) together with several other points (magenta, yellow, cyan). Critical orbit
delineates rotation domain.
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Figure: A rotation domain in ξ ≈ 0.2949 (right), and an attracting cycle of period 4
in ξ = 0.25 (left).
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Figure: ξ ≈ 0.4892. A rotation domain being ‘squeezed’.
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Figure: Left to right: ξ ≈ 0.1543, 0.2475, 0.3408. Shape of rotation domain
suggestive of nearby rational numbers: 2/13, 1/4, 1/3.

Irrationally Indifferent Fixed Points · The Postcritical Closure 62/63



References

▶ Beardon, Alan F. 2000. Iteration Of Rational Functions. New York, NY: Springer.
▶ Brjuno, Alexander D. 1965. Convergence of transformations of differential equations to

normal forms. Dokl. Akad. Nauk USSR 165, 987-989 (Soviet Math. Dokl., 1536-1538).
▶ Carleson, Lennart and Gamelin, Theodore W. 2013. Complex Dynamics. New York, NY:

Springer.
▶ Geyer, Lukas. 2016. Topics In Mathematics Complex Dynamics. Lecture Notes, 2016.
▶ McMullen, Curtis T. 1994. Complex Dynamics and Renormalization. Available from:

http://people.math.harvard.edu/ ctm/papers/home/text/papers/real/book.pdf.
Accessed June 2020.

▶ Milnor, John W. 2006. Dynamics In One Complex Variable. Princeton, N.J.: Princeton
University Press.

▶ Siegel, Carl L. 1942. Iteration of analytic functions, Ann. of Math. (2) 43, 607–612. MR
7044

▶ Stoll, Danny. 2020. A Brief Introduction To Complex Dynamics. University of Chicago.
Accessed June 2020.

References 63/63


	Introduction
	Geometrically Attracting or Repelling Fixed Points
	Superattracting Fixed Points
	Parabolic Fixed Points
	Irrationally Indifferent Fixed Points
	Cremer's non-linearisation theorem
	Siegel's Linearisation Theorem
	Siegel's Linearisation Theorem (Weak Version)
	Siegel's Linearisation Theorem
	The Postcritical Closure
	The Postcritical Closure

	References

