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Abstract

We observe that invariant learning is sometimes effective in a su-

pervised learning context even when the “nuisance factors” truly pro-

vide information on the target variable, and find sufficient conditions,

in terms of information theory, for this to occur. Our work is the pre-

liminary set-up for a significant line of research that could be opened

into invariant learning in tasks where there are direct correlations be-

tween nuisance factors and the target variable.
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1 Introduction

Invariant learning is a problem in machine learning, wherein one seeks to en-

sure the learned function (or distribution, etc.) is unaffected by some set of

transformations of the input space. A simple example of such a set of trans-

formations is the group of rigid transformations (rotations and translations)

acting on an input space of images.

There is a significant corpus of literature detailing algorithms for learning

invariantly to such particular transformation groups – the chief approaches

among these are:

• Manifestly invariant architectures, i.e. that can only learn func-

tions that are invariant to those transformations – e.g. group-convolutional

neural networks [1] (of which the familiar convolutional neural networks

are a special case). A particularly significant result (from [2]) is that

any neural network architecture that is manifestly invariant to a com-

pact group of transformations is a group-convolutional neural network.

• Data augmentation, i.e. adding transformations of the data points to

“teach” the algorithm that these transformed inputs must be assigned

the same label – see e.g. [3, 4].

We will highlight two specific line of research in the literature to motivate

the problem we study in our project.

1. The pathological 6 and 9 problem (mentioned in e.g. [5, 6]) – If
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you apply a rotation-invariant classification algorithm to distinguishing

“6”s and “9”s, it will perform rather poorly, as a rotated “6” is in fact,

very likely a “9”, and should be read as such. [7] argues that the

task can still be considered to be invariant, except to a different set

(in particular a partial semigroup) of transformations including only

rotations up to a certain angle; however, it remains true that naive

rotation-invariant learning will not be effective for this task.

2. Fairness in machine learning (reviewed in e.g. [8]) – Consider a

practical machine learning application used by say, a moneylender, to

assess the probability of a loan applicant defaulting based on vari-

ous variables (income, credit rating, etc.) Writers of machine learning

ethics often argue [9] that some factors (typically “sensitive” variables

like race and religion) ought to not be considered when predicting the

output variable, as they only affect the output variable “through” their

relationship with other input variables – and furthermore, that even if

sensitive variables do provide non-redundant information (information

not contained in the other input variables) about the output variable,

they should still not be considered, for ethical reasons.

(In the latter problem, invariance is understood to mean “ignoring some

variable (X2) in favour of another (X1) while learning the target (Y )”. It

might not immediately be clear how this is related to invariant learning as

we introduced it – this is the statistical notion of invariance, which we will
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motivate later in this section, and formally define in Sec 2.1, but it should be

clear how this generalizes our earlier notion. The group orbits from before

are our X1, while X2 determines the place of a data point on that orbit.)

In the first motivating problem, we ask: What property of the distribu-

tion (of hand-drawn digits) is it, mathematically, that tells us we should not

expect invariant learning to be effective in this case? In the second problem,

we ask: what can we say about the effectiveness of learning invariant to sen-

sitive variables even when these variables provide non-redundant information

about our output variable? Both problems have to do with the fundamental

question, which we seek to approach in this project:

Question 1.1. Under what circumstances will invariant learning (with re-

spect to a particular set of transformations, group or otherwise) be effective

or rational?

The closest work to our own is [4], which we shall now briefly review.

[4] specifically looks at the effectiveness of data augmentation based ap-

proaches to invariant learning. Let the data {xi}ni=1 be sampled from a ran-

dom vector X taking values in some set X ; and let the task be to learn the

distribution ofX within some class of models parameterized by the parameter

θ. Then whereas ordinary learning seeks to minimize
∑n

i=1 L(θ, xi), the pa-

per argues that augmented learning is equivalent to minimizing
∑n

i=1 L̄(θ, xi)

where:
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L̄(θ, x) =

∫
G

L(θ, gX) dQ(g)

And G is a compact topological group acting on X, Q(g) the Haar mea-

sure on G from which the augmentations are assumed to be sampled (we

use the Haar measure because we want to think of the transformations as

“uniformly distributed”).

L̄(θ, x) may then be viewed as the conditional expectation of L(θ, x) over

the random variable [x], the orbit of x under G. It then follows from the

Rao-Blackwell theorem that if [X] is sufficient for θ (which occurs if ∀g ∈

G, X =d gX (=d indicating equality in distribution)), then L̄ has the same

mean, and lower variance than L. Thus if ∀g ∈ G, X =d gX (what they call

“exact invariance”), then invariant learning is effective.

However, our work differs from [4] in several key ways:

1. Their work only considers the effectiveness of data augmentation based

approaches to learning; instead, we seek to abstract away the method

by which invariance is achieved, and instead formulate Question 1.1

more generally: when is it effective to use an invariant learning ap-

proach, at all?

2. Our main result has to do with the case where exact invariance does not

hold. While they also generalize their result to the case of “approximate

invariance” ∀g ∈ G, X ≈d gX (≈d indicating approximate equality in

distribution, defined formally in terms of the Wasserstein metric), this
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is quite different from the case of we consider, as we will see.

3. Their work does not readily generalize to supervised learning tasks –

whereas we only study supervised learning tasks.

In fact, we make here a correction to a claim made on p. 7 of the

paper, it is claimed that for supervised learning applications where we

seek to infer the conditional distribution P (Y | X), we can ask for exact

invariance of (X, Y ), i.e. ∀g ∈ G, (X, Y ) ≈d g ·(X, Y ), where the action

of g on Y is trivial. They claim that this means “the probability of

an image being a bird is [...] the same as the probability for a rotated

image”.

However, this is not quite true – exact invariance of (X, Y ) should

actually be read as “the probability of finding an image and it being

a bird, is the same as finding a rotated image and that being a bird”.

For example, if the rotated image is much less likely to be found in

a real (non-augmented) dataset, then we don’t have exact invariance

of (X, Y ), however this should not affect our decision to use invariant

learning to infer P (Y | X).

The result of [4] remains correct, as certainly exact invariance of (X, Y )

implies the effectiveness of invariant learning – however, this condition

is simply stronger than necessary for supervised learning tasks, and we

will later formulate a more appropriate notion of “exact invariance” for

conditional distributions in Sec 5.
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We will mention that the second motivation we presented – fairness in ma-

chine learning – suggests a fundamental link between this problem and causal

modeling. We will mathematically formulate causal modeling in Sec 2.2, but

for now we will say that the idea that X2 provides only redundant infor-

mation on Y once given X1 is fundamentally a statement of conditional

independence: we say Y and X2 are conditionally independent given X1, or

P (Y | X1, X2) = P (Y | X1), or Y ⊥⊥ X2 | X1. As we will see, this is the

same as saying that Y and X2, while correlated, are not directly causally

linked – performing an intervention on X2 (i.e. changing X2 while leaving

X1 unchanged) will not change Y .

(Therefore in some fundamental sense, invariant learning is about learn-

ing causations rather than mere correlations. One may say that invariant

learning is to be performed in the anticausal direction, i.e. to learn Y from

X when Y is believed to be a cause for X rather than the other way around.

This fact has been understood in the literature at least informally – e.g. the

standard Bible of causal inference [10] highlights that anticausal learning is

performed when the mechanisms being learned are “disentangled”. We will

not dwell on this highly abstracted perspective on causal inference, but it

serves to put our work in perspective, and to motivate the use of a statistical

rather than deterministic definition of invariance.)

Certainly invariant learning – informally for our purposes, ignoring some

variable X2 while learning P (Y | X1, X2) – is effective when X2 is redundant

for Y given X, i.e. when Y ⊥⊥ X2 | X1. However, we often see that invariant
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Figure 1.1: The target variable, the label, is directly correlated with the
nuisance variable, the position of the image.

learning is sometimes still effective even when this is not the case.

In Fig 1.1, even though X2 provides significant information on Y , we may

still ignore it, because X1 alone is also sufficient to determine Y with a great

degree of accuracy. However, if we were classifying “6”s and “9”s, the orbit

of a character under rotation would not carry sufficient information about

Y – indeed, the orbit of a “6” image could indicate either a “6” or a “9”,

so ignoring the rotation and relying only on the orbit in learning the label

would not be effective.

This very intuitive result is, in a nutshell, what we will aim to formally

explain in this project.

An immediate implication of our result will be to fairness in machine

learning – it will bound the error when applying “fair” (invariant) algorithms

even when sensitive variables provide non-redundant information. For this

reason and others, we suggest that further theoretical study of invariant
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learning in situations with non-redundant information will be valuable, and

outline directions for future research in this area.

1.1 Notation and conventions

Below is a list of notation we will use throughout this report without defini-

tion:

• Probability theory – Let Ω be a sample space, let Ai,Bj, C (1 ≤ i ≤ m,

1 ≤ j ≤ n) be measure spaces: in particular, each Ai is a countable set

with the counting measure αi, and each Bj is a copy of Rnj with the

Lesbesgue measure βj.

– A measurable function Ω→ C is called a “random quantity on C”.

Hereon, we will omit mentioning the sample space Ω and assume

that all random quantities are defined on the same sample space.

– P (A1, . . . An, B1, . . . Bn) denotes, for Ai, Bj random quantities on

Ai,Bj respectively, the probability density function with respect

to α1 ⊗ · · · ⊗ αm ⊗ β1 ⊗ · · · ⊗ βn. Analogously for conditional

probabilities.

– E [. . . ] is the expectation. If the term within the parentheses is

a function of some random quantities f(C1, . . . Ck), we may write

the expectation as Ec1,...ck∼C1,...Ck
[f(c1, . . . ck)]. Analogously for

conditional expectation with respect to a random variable, we

write Ec1,...ck|ck+1...cl∼C1,...Ck|Ck+1...Cl
[f(c1, . . . ck) | Ck+1 = ck+1 . . . Cl = cl] =
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∫
f(c1, . . . ck) d(γ1 ⊗ · · · ⊗ γk | γk+1 ⊗ · · · ⊗ γk) where γi denote the

probability measures on the respective sets in which Ci take val-

ues, and µ | ν denotes the regular conditional probability measure

of µ against ν.

– The notation A ⊥⊥ B represents independence, and is to be read

A and B are independent, i.e. P (A | B) = P (A); A ⊥⊥ B | C

represents conditional independence, and is to be read “A and B

are independent, conditional on C”, i.e. P (A | B,C) = P (A | C).

– The notation =d reads “equal in distribution to”, and the notation

≈d reads “approximately equal in distribution to”.

• Graph theory – LetV be a graph consisting of vertices labelled V1, . . . Vn.

– Parents(Vi) is the set of parents of Vi in the graph V, i.e. of the

nodes Vk with an arrow going Vk → Vi.

– Descendants(Vi) is the set of descendants of Vi in the graph V,

i.e. of the nodes Vk such that there exists some ordered list

(Vi1 , Vi2 , . . . Vim) (m ≥ 1) where Vi1 = Vi, Vim = Vk and ∀j < m

there is an edge directed Vij → Vij+1
. Note that in particular

Vi ∈ Descendants(Vi).

• Information theory – We use the standard notations for entropies; three

particular entropies that will be of relevance to us are listed below. All

logarithms are base 2 unless stated otherwise.
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– Let p and q be distributions on some discrete space B – then

H [p, q] := −
∑

b∈B p(b) log q(b) denotes the cross-entropy of the

distributions.

– Let A and B be random quantities on measurable spaces A, B

respectively; then H [B | A] := −Ea,b∼A,B [log P (b | a)] denotes the

conditional entropy of B given A.
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2 Prerequisites and literature

2.1 Invariance

We will detail a sequence of definitions of invariance from the literature, short

of the generalized definitions we will give in Secs 3, 5.

Def 2.1 gives the “canonical” or most basic definitions of equivariance and

invariance, as used in [2] (similar definitions are assumed in [1, 11–14]).

Definition 2.1 (Invariance – deterministic; group). Where G is a group

acting on X and Y , a function f : X → Y is said to be G-equivariant if

∀g ∈ G and ∀x ∈ X :

f(g(x)) = g(f(x))

Of particular interest is the case where the action of G on Y is id – f is said

to be G-invariant if ∀g ∈ G and ∀x ∈ X :

f(g(x)) = f(x)

Def 2.2 generalizes Def 2.1 to any partition on X , not just the quotient

space of the group action, X/G. We mention this generalization, as this will

closely connect to our later definitions of invariance.

Definition 2.2 (Invariance – deterministic; partition). Where R is an equiv-

alence relation on X , a function f : X → Y is said to be R-invariant if it is
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a function purely on the partition defined by R, i.e. ∀x, x′ ∈ X :

[x]R = [x′]R =⇒ f(x) = f(x′)

These definitions so far have been for a deterministic function f . In this

project, we will instead treat learning as a statistical inference problem, i.e.

of inferring the distribution P (Y | X) from data. We will state two statistical

formulations of invariance and discuss their relevance (or lack thereof) to our

problem, so as to better justify the definition we will make in Sec 3.

Definition 2.3 (Invariance – definition in [15]). Let X ,Y be sets (Y dis-

crete), and X, Y are random quantities taking values in X ,Y (i.e. they are

measurable functions Ω→ X , Ω→ Y for sample space Ω). Now let:

• T be a representation of X: a random quantity on a set T such that

T ⊥⊥ Y | X.

• N be a nuisance to Y : a random quantity on a setN such that Y ⊥⊥ N .

Then T is said to be an N -invariant representation if T ⊥⊥ N .

Def 2.3 is the formulation of invariance in Def [15] – it defines what it

means for a representation (given by a random variable of its own) to be

invariant to some nuisance variable.

This definition is somewhat hard to motivate, because the goal of [15]

is different from ours – it is to give an explanation for the effectiveness of

deep neural networks, arguing that this has to do with a certain propensity
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for deep neural networks to learn invariant representations when the number

of hidden layers is large. In particular, it has a crucial limitation for our

purposes: it presumes, a priori, that Y ⊥⊥ N – whereas our central result

Thm 5.3 says essentially that invariant learning is rational when Y ⊥⊥ N ,

and that it can still be rational otherwise under certain conditions.

Definition 2.4 (Invariance – definition in [4]). Let Z be a set, Z be a random

quantity taking values in Z, and G be a group acting on Z. Then Z is said to

be G-invariant if for any g ∈ G, gZ =d Z (i.e. gZ has the same distribution

as Z).

Def 2.4 is the formulation of invariance in Def [4] – it defines what it means

for a distribution to be invariant. This is a fundamentally different idea than

invariant representations – we’re no longer talking about the invariance of

an inferred distribution, but of the “true” distribution of the data. One may

imagine that the relationship is closely relevant to Question 1.1 – indeed, if

the “true” distribution is invariant (and we will there define this in a slightly

more general way than below), then it is effective to learn invariantly.

2.2 Causation

As discussed in Sec 1, there is a close relationship between invariance and

causal modeling. We will formally introduce causal modeling in this section;

however, as causation is not the primary topic of this project, we will not

dwell too long explaining the definitions, nor will we provide proofs for the
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rain sprinkler

wet grass

wet grass

sprinkler

rain

Figure 2.1: Distinct causal models

propositions – full treatments can be found in [10, 16].

At first, causation might seem like something outside the domain of seri-

ous statistics – indeed, for a long period of history, statisticians believed that

causation could not be determined without knowing timestamps, or without

performing direct interventions. However, this is no longer the case – indeed,

causation must be a physically valid concept, because it is testable: for ex-

ample, in Fig 2.1: “rain causes wet grass” can be distinguished from “wet

grass causes rain” by turning on the sprinkler and checking if this results in

rain.

We will shortly define formally what these arrows mean; but intuitively, a

statement of causation can fundamentally only be expressed relative to some

set of “control variables”, namely in terms of independences conditional on

these control variables.

Definition 2.5 (Causal model). Let the random variables X1, . . . Xn be

sampled from some joint distribution P (X1, . . . , Xn). Have X be a Di-
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rain sprinkler

wet grass

wet grass

sprinkler

rain

Figure 2.2: Equivalent causal models

rected Acyclic Graph (DAG) of X1, . . . Xn (i.e. with these random variables

uniquely represented as its nodes); then the ordered list

(X,P (X1 | Parents(X1)) , . . . ,P (Xn | Parents(Xn)))

is called a causal model for P (X1, . . . Xn).

Def 2.5 alone makes no non-trivial statement about the joint distribution

P (X1, . . . , Xn) – indeed, any such causal model could be constructed for

any joint distribution. What gives meaning to a causal model is the Causal

Markov condition (Def 2.6), or equivalently Markov factorization (Prop 2.7),

or equivalently d-Separation (Prop 2.9).

Briefly: the Causal Markov condition states that a causal model implies

certain conditional independencies, the “hypothesis” entailed by the model;

Markov factorization makes this hypothesis algebraically explicit – as the

statement that specifying certain conditional distributions suffices to deter-
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mine the joint distribution; d-Separation provides a rather intuitive picture

for conditional independence as the absence of “unblocked paths” between

two nodes for information to flow through.

Definition 2.6 (Causal Markov condition). A causal model as in Def 2.5 is

said to be causally Markov if ∀X ∈ X, X ⊥⊥ Descendants(X)C | Parents(X)

Proposition 2.7 (Markov factorization). A causal model as in Def 2.5 is

causally Markov if and only if:

P (X1, . . . , Xn) =
∏
i

P (Xi | Parents(Xi))

Definition 2.8 (d-Separation). In any DAG X, an ordered list of nodes

(Xi1 , . . . Xim) such that for all j, there is either an edge directed Xij → Xij+1

or an edge directed Xij ← Xij+1
– is called a path and is denoted as Xi1 →

Xi2 ← · · · ← Xim depending on which edge exists between each consecutive

pair of nodes. Each node Xi2 , . . . Xim−1 is called a “junction” – a node Xij is

classified into one of three types, as follows:

• “Chain” if there are edges directed Xij−1
→ Xij → Xij+1

• “Fork” if there are edges directed Xij−1
← Xij → Xij+1

• “Collider” if there are edges directed Xij−1
→ Xij ← Xij+1

Let Y ⊆ X. Then we say a junction Xij is “blocked when conditioned on

Y” iff one of the following holds (and unblocked ditto otherwise):
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• It is a chain junction, and Descendants(Xij) ∩Y ̸= ∅.

• It is a fork junction, and Descendants(Xij) ∩Y ̸= ∅.

• It is a collider junction, and Descendants(Xij) ∩Y = ∅.

The ordered list (Xi1 , . . . Xim) is said to be “blocked when conditioned on

Y” iff any one of its junctions Xi2 , . . . Xim−1 is blocked when conditioned on

Y.

Two nodes X1 and X2 are said to be “d-separated when conditioned on

Y” (X1 ↮ X2 | Y) if all paths between them are blocked when conditioned

on Y.

Two subsets X1,X2 ⊆ X are said to be “d-separated when conditioned

on Y” (X1 ↮ X2 | Y) if each pair X1 ∈ X1, X2 ∈ X2 are d-separated when

conditioned on Y.

Proposition 2.9 (d-Separation). A causal model as in Def 2.5 is causally

Markov if and only if ∀X1,X2,Y ⊆ X, X1 ↮ X2 | Y =⇒ X1 ⊥⊥ X2 | Y.

Note that multiple DAGs may be consistent with the same hypothesis, i.e.

lead to the same joint distribution – indeed, a joint distribution defines an

equivalence class of DAGs (called Markov equivalence), rather than a unique

DAG. Fig 2.1 shows an example of inequivalent causal models while Fig 2.2

shows an example of equivalent causal models.

The relationship between equivariance/invariance and causal modeling is

alluded to in several areas in the literature: [8] describes that disentangled
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representation (used as a synonym for equivariant representation in the ref-

erence) decomposes the data into generative factors that may be understood

as causal parent variables, or in terms of conditional independence relations

that represent invariances; [17] describes that disentangled representation

is a consequence of the Markov factorization (referred to as “disentangled

mechanisms”) for particular causal graphs; [18–20] all introduce algorithms

to obtain disentangled representations through Markov factorization; this

relationship was an important theme of the NIPS 2017 workshop “Learning

Disentangled Representations: from Perception to Control”.

2.3 Miscellaneous mathematics

We will use the cross-entropy loss as our loss function throughout this report

– because as we will see, it is most natural to think of our main result in

terms of information theory. Lemma 2.10 will be useful to us in this regard.

Lemma 2.10 (Expected cross-entropy loss). Let X ,Y be sets (Y discrete),

X, Y be random quantities taking values in X ,Y and Q(y | x) be a distribu-

tion in y that is also a function in x – for some IID sample D = {(xi, yi)}ni=1

of (X, Y ), we define the cross-entropy loss of Q on D as:

L(Q,D) = − 1

n

∑
(x,y)∈D

Q(y | x)
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Then the risk (expected loss) of Q is given by:

R(Q) = Ex∼X [H [P (y | x) , Q(y | x)]]

Proof.

R(Q) = E [L(Q,D)]

=
1

n

∑
Ex,y∼X,Y [− logQ(y | x)]

= Ex,y∼X,Y [− logQ(y | x)]

= Ex∼X

[
Ey|x∼Y |X [− logQ(y | x) | X = x]

]
= Ex∼X [H [P (y | x) , Q(y | x)]]

Lemma 2.11 (Entropy cannot increase on conditioning). Let A,B1, . . . Bn, Bn+1

be random variables; then

H [A | B1, . . . Bn, Bn+1] ≤ H [A | B1, . . . Bn]
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Proof.

H [A | B1, . . . Bn, Bn+1] = H [A,Bn+1 | B1, . . . Bn]− H [Bn+1 | B1, . . . Bn]

≤ H [A | B1, . . . Bn] + H [Bn+1 | B1, . . . Bn]− H [Bn+1 | B1, . . . Bn]

= H [A | B1, . . . Bn]

We will also use a basic fact about group orbits to relate our formalism

to group-theoretic formulations of invariance.

Lemma 2.12 (Product of group and set of orbits). Let X be a set and G

be a group acting on this set such that all stabilizers are trivial (i.e. ∀x ∈

X , {g : gx = x} = {1G}). Then, where X/G is the set of orbits (i.e. its

elements are the equivalence classes of X defined by the equivalence relation

x ∼ y ⇐⇒ ∃g, gx = y), there is a bijection ϕ : X/G×G→ X .

Proof. Let ξ : X/G→ X be some choice function, i.e. ∀O ∈ X/G, ξ(O) ∈ O,

i.e. ξ(O) is some representative element in the orbit O. Then construct

ϕ(O, g) := gξ(O).

• Surjectivity: Let x ∈ X . Where [x] is the orbit of x, we have ξ([x]) ∈

[x] thus ∃g, gξ([x]) = x (by definition of the equivalence relation that

defines orbits) – hence ϕ([x], g) = gξ([x]) = g.

• Injectivity: suppose ϕ(O1, g1) = ϕ(O2, g2), i.e. g1ξ(O1) = g2ξ(O2) =

x: note that ξ(O1) ∈ O1, and since O1 is an orbit, g1ξ(O1) ∈ O1,
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analogously g2ξ(O2) ∈ O2. Thus x ∈ O1 ∩ O2; but since the orbits are

a partition, O1 ∩ O2 ̸= ∅ =⇒ O1 = O2. Now (where O = O1 = O2),

g1ξ(O) = g2ξ(O) =⇒ g−1
2 g1ξ(O) = ξ(O), but since all stabilizers

are trivial, we must have g−1
2 g1 = 1G, thus g1 = g2. Thus we have

(O1, g1) = (O2, g2).
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3 Formalism

We seek to precisely formulate and answer the question “When is invariant

learning rational?” To be as general as possible, and to exploit the machinery

of causal reasoning, we will be using a statistical generalization (Def 3.3) of

our earlier definition (Def 2.2) of invariance. For reference throughout the

paper, we define the following problem framework, and examples thereof.

Framework 3.1 (The learning problem). Let X ,Y be sets (Y discrete), and

X, Y are random quantities taking values in X ,Y (i.e. they are measurable

functions Ω→ X , Ω→ Y for sample space Ω).

We then seek to estimate, or learn the distribution P (Y | X). We do so

by taking an IID sample D = {(xi, yi)}ni=1, and minimizing the loss:

L(Q,D) = − 1

n

∑
(x,y)∈D

logQ(y | x)

By Lemma 2.10, E [L(Q,D)] = H [P (y | x) , Q(y | x)], which we know is

minimized by P (Y | X). We will call the distribution that minimizes L(Q,D)

the “minimum-loss estimator for P (Y | X)”.

Definition 3.2 (Invariant representation - general). In Framework 3.1, where

R is an equivalence relation on X , we say that a distribution Q(y | x) is R-

invariant if ∀x, x′ ∈ X , [x]R = [x′]R =⇒ Q(y | x) = Q(y | x′).

It is straightforward to see that this reduces to Def 2.2 when Q(Y | X) has

singleton support over y (i.e. when Y is merely a function of X). A special
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case – which we shall use as it will be sufficient for most of our purposes – is

given in Def3.3:

Definition 3.3 (Invariant representation). In Framework 3.1, suppose that

we can factor X = X1×X2, writing each X = (X1, X2). We say that Q(y | x)

is X2-invariant if ∀x1, x2, x
′
2, Q(y|(x1, x2)) = Q(y|(x1, x

′
2)).

Prop 3.4 describes the relationship between our Def 3.3 and that in [15] –

one could imagine this as providing intuition for [15], as its original definition

seemed rather un-motivated, whereas Def 3.3 is quite intuitive.

Proposition 3.4 (Def 2.3 vs. Def 3.3). Consider the set-up in Def 3.3, and

suppose Y ⊥⊥ X2 (i.e. X2 is a nuisance to Y ). Let T be any random variable

with probability distribution given by P (T = t | X = x, Y = y) = Q(t | x). T

is X2-invariant (Def 2.3) iff Q(y | x) is X2-invariant (Def 3.3).

Proof. Trivial:

Q(t | (x1, x2))

= P (T = t | X1 = x1, X2 = x2, Y = y)

= P (T = t | X1 = x1, X2 = x′
2, Y = y)

= Q(t | (x1, x
′
2))

And swap lines (12)(34) to show the converse.

Definition 3.5 (Invariant learning). In Framework 3.1, suppose that we can

factor X = X1×X2, writing each X = (X1, X2). We once again seek to learn
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the distribution P (Y | X) by taking an IID sample D = {(xi, yi)}ni=1, and

minimizing L(Q,D) – but this time, only among X2-invariant distributions.

Note that the X2-invariant distributions Q(y | x) are in one-to-one cor-

respondence with distributions in y that are functions in x1: Q̄(y | x1) :=

Q(y | (x1, x2) (which is well-defined because the right-hand-side is the same

for any x2); so this is equivalent to finding a Q̄(y | x1) that minimizes the

loss:

L(Q̄,D) = − 1

n

∑
(x,y)∈D

log Q̄(y | x1)

Since Q̄(y | x1) is still a “distribution in y that is also a function of x”, by

Lemma 2.10, L(Q̄,D) is an unbiased estimator ofR(Q̄) = Ex∼X

[
H
[
P (y | x) , Q̄(y | x1)

]]
.

We will call the Q̄(y | x1) that minimizes L(Q̄,D) the “minimum-loss estima-

tor for P (Y | X1)”; we call the X2-invariant Q(y | x) that minimizes L(Q,D)

among X2-invariant representations the “minimum-loss invariant estimator

for P (Y | X)”.

(Note that because these loss functions are equal in value for correspond-

ing Q̄, Q, these estimators are also equal in value.)
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4 Illustrative examples

We will now define several examples to motivate our research questions more

thoroughly, and later to intuit the result in Thm 5.3. Ex 4.1 is the sort of

task we’d actually like to study, while Ex 4.2,highlights toy examples that

will represent our different cases where invariant learning might be suitable

or effective, and will be very helpful in providing concrete interpretations of

our causal diagrams.

Example 4.1 (Real example). Let Y = {0, 1} and X = {x : R2 → {0, 1}}

be the set of images; define X2 = {Tv : X → X : x 7→ λi.x(i − v) | v ∈

R2} ∼= R2 to be the group of translations acting on X ; define X1 = X/X2 to

be the quotient by the group action (i.e. the orbits under translation). By

Lemma 2.12, there is a bijection ϕ : X1×X2 → X given by ϕ(O, Tv) = Tvξ(O)

where ξ(O) is some representative in O – in particular, one may choose

the representative ξ(O) to be the element x in O whose centroid CM [x] =∫
i∈R2 x(i)i dA is 0 (it is easy to see that such an element exists in each orbit

– pick any element and translate it by its centroid – and is unique in each

orbit – any two elements differing by a translation differ in their centroid);

then ϕ−1 : x 7→ ([x], TCM[x]). Composing this with the isomorphism X2
∼= R2

(given by Tv 7→ v), we have x 7→ ([x],CM [x]). Thus the decomposition

X1 ×X2 decomposes an image into its orbit under translations (its “shape”)

and its centroid (its “position”).

This defines X ,Y . Intuitively, one imagines P (X | Y ) as representing the
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process by which people draw “0”s and “1”s – every possible image has some

probability of being drawn to show either a “0” or a “1”. Any interesting

distribution on X ,Y – one that could actually represent the generation of

hand-drawn “0”s and “1”s in the real-world – would be too complicated

to write down compactly, but we will qualitatively describe some possible

distributions, for the purpose of illustration and understanding – see Fig 4.1

for a visualization.

(a) We randomly choose Y (whether to draw 0 or 1); then independently

choose a position (X2) to draw it at; then generate X1 based on Y alone

(we draw a shape based on the character it is supposed to represent);

then proceed X := (X1, X2) (the chosen shape is drawn at the chosen

position).

(b) We randomly choose Y ; then generate X1 based on Y alone; then

generate X2 based on X1 alone (e.g. if our wrist is twisted so that

more rounded shapes are more likely to be drawn to the right and

straighter shapes are more likely to be drawn to the left); then proceed

X := (X1, X2).

(c) We randomly choose Y , then generate X1 from Y alone; then generate

X2 based on Y alone (e.g. for whatever reason, when we draw “0”s, we

are more likely to draw them to the right, while when we draw “1”s,

we are more likely to draw them to the left.

It might seem that (b) and (c) are identical (indeed, a sample from either
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distribution is likely to look similar, like in Fig 4.2), but this is an artifact of

Y being almost entirely determined by X1. In (b), if we “mistakenly” draw

a “0” like a “1”, it will likely be to the left, while this is not so in (c).

Example 4.2 (Toy examples). These toy examples will represent different

cases where invariant learning might be suitable or effective. As we will see,

the cases are distinguished essentially by their causal diagram.

(a) Let X = [0, 2), Y = {0, 1}, and factor X = {0, 1}× [0, 1) in the obvious

way (by writing x = (⌊x⌋ , {x})). Suppose that (p is imagined close to 0):

Y | X ∼


Bernoulli(p) ⌊X⌋ = 0

Bernoulli(1− p) ⌊X⌋ = 1

And:

X ∼ Unif(0, 2)

We have provided the distribution in this inverted form to visualize Y as a

stochastic function of X (as in Fig 4.3); but we can also express it in a way

that will be more useful for us later when we think of these terms causally:

Y ∼ Bernoulli(1/2)

P (X | Y ) =

Y = 0 Y = 1

0 ≤ X < 1 1− p p

1 ≤ X < 2 p 1− p
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(b) Same as Ex 4.2 (a), but X is distributed as (q is imagined close to 0):

P (X) =


1− q 1

2
≤ X < 3

2

q otherwise

Again, one may express this model as:

Y ∼ Bernoulli(1/2)

P (X | Y ) =

Y = 0 Y = 1

0 ≤ X < 1
2

2(1− p)q 2pq

1
2
≤ X < 1 2(1− p)(1− q) 2p(1− q)

1 ≤ X < 3
2

2p(1− q) 2(1− p)(1− q)

3
2
≤ X < 2 2pq 2(1− p)q

(c) Let X ,Y be as before. Suppose that

Y ∼ Bernoulli(1/2)

And that P (⌊X⌋ , {X} | Y ) = P (⌊X⌋ | Y ) P ({X} | Y ) where:

⌊X⌋ | Y ∼


Bernoulli(p) Y = 0

Bernoulli(1− p) Y = 1
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P ({X} | Y ) =

Y = 0 Y = 1

0 ≤ {X} < 1
2

q 1− q

1
2
≤ {X} < 1 1− q q

Exs 4.2 (a), 4.2 (b), 4.2 (c) are illustrated in Fig 4.3 – on the left with

a sample from the joint distribution of (X, Y ), and on the right a causal

diagram consistent with the joint distribution (i.e. which is a Markov factor-

ization if the joint distribution). The correctness of the causal diagrams can

easily be verified by hand, and they are motivated below.

Ex 4.2 (a) is the simplest example, in which {X} is distributed (uniformly,

in fact) independent of any other variables. This is the most elementary

situation in which invariant learning is clearly desirable – we should not take

{X} into account while learning P (Y | X), as there is simply no flow of

information between {X} and Y .

Ex 4.2 (b) is more interesting. Y and {X} are certainly correlated – if

Y = 0, {X} > 1/2 with probability 1 − q, and if Y = 1, {X} > 1/2 with

probability q. However, the relationship is not a causal one – changing {X}

won’t change the distribution of Y , changing Y won’t change the distribution

of {X} (provided ⌊X⌋ is the same). Indeed, the joint distribution can be

factored as:

P (⌊X⌋ , {X}, Y ) = P ({X} | ⌊X⌋) P (⌊X⌋ | Y ) P (Y )
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Where:

P (Y ) =


1/2 Y = 0

1/2 Y = 1

P (⌊X⌋ | Y ) =

Y = 0 Y = 1

⌊X⌋ = 0 1− p p

⌊X⌋ = 1 p 1− p

P ({X} | ⌊X⌋) =

⌊X⌋ = 0 ⌊X⌋ = 1

0 ≤ {X} < 1
2

q 1− q

1
2
≤ {X} < 1 1− q q

Thus Y −→ ⌊X⌋ −→ {X} is a valid causal diagram for Ex 4.2 (b).

Should we, then, take {X} into account while learning P (Y | X)? Cer-

tainly not, as P (Y | X) does not depend on {X} – we have Y ⊥⊥ {X} | ⌊X⌋.

Ex 4.2 (c), however, models a distribution that – while it superficially

looks similar to that in Ex 4.2 (b) (the left sides of Figs 4.3b, 4.3c are similar)

– has a fundamentally different causal diagram. Even if we know ⌊X⌋ – say,

if we know that ⌊X⌋ = 0 – knowing {X} > 1/2 will indicate that Y is more

likely to be 0. So really, we should take {X} into account when learning

P (Y | X).

However, in this case, even if we don’t take {X} into account – even if we

were to just learn P (Y | ⌊X⌋) and apply that to predict Y from X on our
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data, we’d still get a low loss. Indeed – we can compute in this example:

P (Y | X) =



⌊X⌋ = 0 ⌊X⌋ = 1

0 ≤ {X} < 1
2

(1−p)q
(1−p)q+p(1−q)

pq
pq+(1−p)(1−q)

1
2
≤ {X} < 1 (1−p)(1−q)

pq+(1−p)(1−q)
p(1−q)

(1−p)q+p(1−q)

(Y = 0)

⌊X⌋ = 0 ⌊X⌋ = 1

0 ≤ {X} < 1
2

p(1−q)
(1−p)q+p(1−q)

(1−p)(1−q)
pq+(1−p)(1−q)

1
2
≤ {X} < 1 pq

pq+(1−p)(1−q)
(1−p)q

(1−p)q+p(1−q)

(Y = 1)

P (Y | ⌊X⌋) =



⌊X⌋ = 0 ⌊X⌋ = 1

1− p p

(Y = 0)

⌊X⌋ = 0 ⌊X⌋ = 1

p 1− p

(Y = 1)

Then for some sample D = {(xi, yi)}ni=1 of (X, Y ), suppose we predict

ŷi with the distribution P (Y | ⌊X⌋ = ⌊xi⌋) (i.e. if our invariant learning

algorithm computes P (Y | ⌊X⌋) exactly) and compute our loss as:
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Linv(D) = −
1

n

∑
(x,y)∈D

log P (Y = y | ⌊X⌋ = ⌊x⌋)

Then the expected loss is (as per Prop 2.10):

E [Linv] = Ex∼X [H [P (Y = y | X = x) ,P (Y = y | ⌊X⌋ = ⌊x⌋)]]

And we can compute it as:

H [P (Y = y | X = x) ,P (Y = y | ⌊X⌋ = ⌊x⌋)]

=−
∑
y∈Y

P (Y = y | X = x) log P (Y = y | ⌊X⌋ = ⌊x⌋)

=− P (Y = 0 | X = x) log P (Y = 0 | ⌊X⌋ = ⌊x⌋)

− P (Y = 1 | X = x) log P (Y = 1 | ⌊X⌋ = ⌊x⌋)

=

⌊x⌋ = 0 ⌊x⌋ = 1

0 ≤ {x} < 1
2

− (1−p)q
(1−p)q+p(1−q)

log(1− p)

− p(1−q)
(1−p)q+p(1−q)

log(p)

− pq
pq+(1−p)(1−q)

log(p)

− (1−p)(1−q)
pq+(1−p)(1−q)

log(1− p)

1
2
≤ {x} < 1

− (1−p)(1−q)
pq+(1−p)(1−q)

log(1− p)

− pq
pq+(1−p)(1−q)

log(p)

− p(1−q)
(1−p)q+p(1−q)

log(p)

− (1−p)q
(1−p)q+p(1−q)

log(1− p)

Noting that (by simple application of law of total probability):
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P (X) =

⌊X⌋ = 0 ⌊X⌋ = 1

0 ≤ {X} < 1
2

(1−p)q+p(1−q)
2

pq+(1−p)(1−q)
2

1
2
≤ {X} < 1 pq+(1−p)(1−q)

2
(1−p)q+p(1−q)

2

The desired expectation simplifies as:

E [Linv] =
(1− p) log(1− p) + p log(p)

2

Which tends to 0 as p→ 0.

This makes intuitive sense – even if {X} genuinely provides new (inde-

pendent of ⌊X⌋) information on Y , we may still be safe to ignore it if ⌊X⌋

provides enough information anyway (i.e. if p is close to 0). Crucially, the

loss tends to 0 independent of whether q → 0 – it does not matter how much

information {X} provides on Y , simply that ⌊X⌋ provides a large amount of

information on Y .

This will be the basic idea behind our main result, which we will prove in

Sec 5: if Y is “almost determined” byX1, then Ex∼X [H [P (Y | X) ,P (Y | X1)]]

is “almost 0”.
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X2 = (1.2,−1.0)X1 =

X =

Y = 1

X2X1

X

Y

X2X1

X

Y

(a)

(b)

(c)

Figure 4.1: Causal models for Ex 4.1 (a), (b), (c), with size-1 sample in (a)
for illustration purposes
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Figure 4.2: Sample from Ex 4.1 (c)

5 Main result

In Def 3.3, we defined what it meant for a representation – a learning

algorithm, as thought of as an estimate Q(y | x) for the true posterior

P (Y = y | X = x). In Def 5.1, we will define what it means for the true

posterior P (Y = y | X = x) to be invariant.

Definition 5.1 (Invariant posterior). Let X ,Y be sets and X, Y are random

quantities taking values in X ,Y ; suppose we can factor X = X1×X2, writing

each X = (X1, X2). We say that the posterior P (Y | X) is X2-invariant if

P (Y | X1, X2) = P (Y | X1), i.e. Y ⊥⊥ X2 | X1.

Note that Def 5.1 is similar in spirit to Def 2.4 – both talk about the invari-

ance of a probability distribution, rather than of a representation. However,

Def 5.1 speaks of invariance of the conditional distribution P (Y | X) while

Def 2.4 speaks of the invariance of the joint distribution P (X, Y ) – the former

is more useful for supervised learning applications. We do, however have:
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1 2

1

X

Y

Y

⌊X⌋ {X}

(a) Ex 4.2 (a)

1 2

1
Y

⌊X⌋ {X}

X

Y

(b) Ex 4.2 (b)

1 2

1
Y

⌊X⌋ {X}

X

Y

(c) Ex 4.2 (c)

Figure 4.3: Exs 4.2 (a), 4.2 (b), 4.2 (c) – (left) sample of joint distribution
(right) causal diagram
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Proposition 5.2 (Def 2.4 vs. Def 5.1). Consider the set-up in Def 2.4;

suppose we can factor Z = X × Y so Z = (X, Y ), and that the action of G

can be decomposed onto this factorization g(x, y) = (g(x), g(y)) with all its

stabilizers on X trivial and its action on Y trivial (id). Further define X1 :=

X/G (the set of orbits) and X2 := G – by Lemma 2.12, there is a bijection

ϕ : X1 × X2 ≃ X , so we can define the random variables (X1, X2) = ϕ−1(X)

taking values in X1, X2.

If P (Y | X) is X2-invariant (Def 5.1) and X is G-invariant (Def 2.4),

then Z is G-invariant (Def 2.4).

Proof.

P (Y | X) is X2 − invariant.

⇐⇒ P (Y | X1, X2) = P (Y | X1)

X is G− invariant.

⇐⇒ ∀g, X =d gX

⇐⇒ ∀x, g, P (X = x) = P (X = gx)

⇐⇒ ∀x, g, P
(
(X1, X2) = ϕ−1(x)

)
= P

(
(X1, X2) = ϕ−1(gx)

)
⇐⇒ ∀x1, x2, x

′
2, P (X1 = x1, X2 = x2) = P (X1 = x1, X2 = x′

2)

⇐⇒ P (X1, X2) = P (X1)
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Z is G− invariant.

⇐⇒ ∀g, Z =d gZ

⇐⇒ ∀g, (X, Y ) =d (gX, Y )

⇐⇒ ∀x, y, g, P (X = x, Y = y) = P (X = gx, Y = y)

⇐⇒ ∀x, y, g, P
(
(X1, X2) = ϕ−1(x), Y = y

)
= P

(
(X1, X2) = ϕ−1(gx), Y = y

)
⇐⇒ ∀x1, x2, x

′
2, y, P (X1 = x1, X2 = x2, Y = y) = P (X1 = x1, X2 = x′

2, Y = y)

⇐⇒ P (X1, X2, Y ) = P (X1, Y )

Suppose the hypotheses. Then:

P (X1, X2, Y ) = P (Y | X1, X2) P (X1, X2) = P (Y | X1) P (X1) = P (X1, Y ).

(This is the proof for discrete Z – for the continuous case, one may

suitably replace probability mass functions by probability density functions.)

(This is in fact a correction to the paper [4] – the paper itself states that

Def 2.4 means “the probability of an image being a bird is [...] the same

as the probability for a rotated image”, which as we discussed in Sec 1, is

incorrect – in fact, this is Def 5.1, which is not equivalent. This is the reason

we had to introduce Def 5.1, as it is what is relevant for supervised learning

applications.)

We are finally ready to state our main result.

Theorem 5.3 (Condition for invariant learning to be suitable). In Frame-

work 3.1, observe that P (Y | X) minimizes the risk among all distributions,
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and P (Y | X1) minimizes the risk among all invariant distributions. We

claim that for any ε > 0, R(P (Y | X1)) − R(P (Y | X)) < ε holds if (not

necessarily only if) either:

• P (Y | X) is X2-invariant in the sense of Def 5.1, in which case R(P (Y | X1))−

R(P (Y | X)) = 0.

• H [Y | X1] < ε.

Proof.

R(P (Y | X))

= EX [H [P (Y | X) ,P (Y | X)]]

= Ex∼X

[∑
y∈Y

P (Y = y | X = x) log P (Y = y | X = x)

]

=
∑

x,y∈X ,Y

P (X = x) P (Y = y | X = x) log P (Y = y | X = x)

=
∑

x,y∈X ,Y

P (X = x, Y = y) log P (Y = y | X = x)

= H [Y | X]

R(P (Y | X1)

= EX [H [P (Y | X) ,P (Y | X1)]]

= Ex∼X

[∑
y∈Y

P (Y = y | X = x) log P (Y = y | X1 = x1)

]
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=
∑

x,y∈X ,Y

P (X = x) P (Y = y | X = x) log P (Y = y | X1 = x1)

=
∑

x,y∈X ,Y

P (X = x, Y = y) log P (Y = y | X1 = x1)

=
∑

x1,x2,y∈X1,X2,Y

P (X2 = x2 | X1 = x1, Y = y) P (X1 = x1, Y = y) log P (Y = y | X1 = x1)

=
∑

x1,y∈X1,Y

[
P (X1 = x1, Y = y) log P (Y = y | X1 = x1)

∑
x2∈X2

P (X2 = x2 | X1 = x1, Y = y)

]

=
∑

x1,y∈X1,Y

[P (X1 = x1, Y = y) log P (Y = y | X1 = x1) · 1]

= H [Y | X1]

If we have invariant posterior, then simply P (Y | X1) = P (Y | X). If

H [Y | X1] < ε, observe that by Lemma 2.11, H [Y | X] = H [Y | X1, X2] ≤

H [Y | X1] < ε. ThusR(P (Y | X1))−R(P (Y | X)) = H [Y | X1]−H [Y | X] <

ε.

Thus in these situations, the “best invariant distribution” does no more

than ε worse than the “best distribution” – our previous observation about

invariance still making sense in the absence of an invariant posterior is there-

fore reduced to an information-theoretic result. The following corollary is a

more direct answer to the question “When is invariant learning effective?”.

Corollary 5.4. Let Q and Q′ be the minimum-loss estimator and the minimum-

loss invariant estimator for P (Y | X) respectively. Then for any ε > 0,

E [L(Q′)− L(Q)] < ε if (not necessarily only if) either:
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• P (Y | X) is X2-invariant in the sense of Def 5.1, in which case R(P (Y | X1))−

R(P (Y | X)) = 0.

• H [Y | X1] < ε.
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6 Conclusion

We began our investigation with the following observation: even when some

“nuisance factor” X2 provides non-redundant information about the label

Y in a supervised learning application, it is sometimes safe to ignore this

factor (i.e. use a learning algorithm that was invariant to this factor), as it

was in Fig 1.1. Certainly, the loss would be greater than if the factor was

incorporated – but still low, so we could hope for a bound on it. Intuitively,

we imagined that the reason that we could do so in Fig 1.1 was that the other

factors X1, namely the “shape” provides “sufficient information” on Y , so

in some sense the information propagated from X1 to Y “dominates” that

propagated from X2 to Y . Crucially, we saw in our analysis of Ex 4.2 (c)

that this domination happens independently of the amount of information

provided by X2 on Y .

Our main result, Thm 5.3 formalizes this observation as an information

theoretic result: specifically, we demonstrate that the expected loss R(Q) for

the distribution P (Y | X) is precisely the conditional entropy H(Y | X), and

for the invariant distribution P (Y | X1) is precisely the conditional entropy

H(Y | X1), which is a measure of the uncertainty that remains in Y after

knowing X1.

This result can be interpreted in the light of our motivating questions.

For applications to fair machine learning, Thm 5.3 says that the condi-

tional mutual information I(Y ;X2 | X1) = H(Y | X1) − H(Y | X1, X2)
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becomes precisely the bound on the increased risk from learning invariant to

sensitive characteristics X2.

Example 6.1 (6 and 9 problem in Framework 3.1). Let Y = {0, 1} and

X = {x : R2 → {0, 1}} be the set of images; define X2 = {TU : X → X : x 7→

λi.x(U−1i) | U ∈ SO(2)} ∼= SO(2) to be the group of rotations acting on

X ; define X1 = X/X2 to be the quotient by the group action (i.e. the orbits

under rotation). By Lemma 2.12, there is a bijection ϕ : X1×X2 → X given

by ϕ(O, Tv) = Tvξ(O) where ξ(O) is some representative in O; then ϕ−1 : x 7→

([x], Tθ(x)) where Tθ(x) ∈ X2 is such that Tθ(x)ξ([x]) = x, which exists as x is in

the same orbit as ξ([x]). Composing this with the isomorphism X2
∼= SO(2)

(given by TU 7→ U), we have x 7→ ([x], θ(x)). Thus the decomposition X1×X2

decomposes an image into its orbit under rotations (its “shape”) and its angle

from some representative element in its orbit (its “angle”).

Ex 6.1 formulates the 6 and 9 problem in the language of Framework 3.1

– in it, the posterior is not invariant: the angle θ(x) provides information on

the label even knowing [x], because a 6 and a 9 may be contained in the same

orbit. And here invariant learning is not effective – but we don’t expect it

to be anyway, because H(Y | X1) is large; we still have very little certainty

on what the label is after knowing the orbit, leaving “room” for X2 to take

away this uncertainty.

Our work is only some preliminary set-up for serious research into the

problem of invariant learning in scenarios without invariant posteriors, which

as we discussed in Sec 1 has many important implications.
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Figure 6.1: All possible causal diagrams that contain an edge between Y
and X1; the boxes are Markov equivalence classes; the causal structures for
Exs 4.2 (a), 4.2 (b), 4.2 (c) are in green, blue and red respectively.
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Figure 6.2: (left) Equivariant posterior (right) Non-equivariant posterior due
to confounding variable, i.e. common cause introducing correlation

We now outline several directions for further research in this area.

1. Our result is specifically for the cross-entropy loss – while this is a

natural loss function to take (especially for our motivating examples),

and it is a rather beautiful result that the condition on this loss being

bounded is also an information-theoretic one, we may be interested

in other loss functions, and these would be bounded by corresponding

measures of conditional uncertainty other than the conditional entropy.

For example, I would conjecture that the corresponding bound for the

mean-squared-error loss (for continuous Y ) would be the conditional

variance Var(Y | X1). It would be of interest to see a general result,

perhaps in the light of empirical risk minimization theory.

2. Our work stands in analogy to the results in [4], in the sense that the
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two sufficient cases in Thm 5.3 are analogous to the results in [4] for

“exact invariance” and “approximate invariance”; however, this is a

rather vague analogy, in that our second case is unrelated to approxi-

mate invariance (while our first case is related to exact invariance by

Prop 5.2).

More generally, Thm 5.3 only provides sufficient conditions for in-

variant learning to be suitable. The converse problem is significantly

harder, as the loss from invariant learning may also be bounded if

P (Y | X1) is “approximately equal” in distribution to P (Y | X). In

[4], “approximately equal in distribution” is defined in terms of the

Wasserstein metric.

3. In Sec 1, we briefly hinted that invariant learning is thought to be

suitable precisely in the anti-causal direction. While the second suffi-

cient case in Thm 5.3 does not make any direct reference to the causal

structure, this is relevant to the converse problem. Fig 6.1 is an exhaus-

tive list of all the relevant possible causal structures between variables

Y,X1, X2 – we ought to formally investigate and justify which causal

structures is invariant learning rational for.

More generally, one may consider similar problems for generalized learn-

ing algorithms on arbitrary causal diagrams – this would be relevant to

generalizing our work to equivariant learning. We have not provided a

formal definition of equivariance beyond the basic definition in Def 2.1;
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however, I would suggest that the causal diagram for an “equivariant

posterior” would look like Fig 6.2 (left).

4. While Thm 5.3 provides conditions for invariant learning to be no worse

than (or rather “no more than ε worse than”) non-invariant learning,

it does not give reasons as to why one should adopt invariant learning

in the first place – what makes it better, even in the second sufficient

case where the loss is in fact greater. This is in contrast to the work

of [4], which demonstrates that an estimator learned through invariant

learning has lower variance, by providing a decomposition of the co-

variance of the non-invariantly learned estimator into the covariance of

the invariantly learned estimator and another positive-definite matrix.

Our representation Q(y | x) is a random function, so we conjecture

that the covariance kernel of the non-invariantly learned Q(y | x) into

the covariance kernel of the invariantly learned Q(y | x) and another

positive-definite kernel. Studying the covariance kernel of Q(y | x)

would also help us prove Corollary 5.4, perhaps through an application

of the multidimensional Chebyshev inequality.

5. In contrast to algorithms that learn invariantly to a given set of sym-

metries, there are various algorithms in the literature that aim to learn

the group of symmetries from the dataset itself, e.g. [7, 21, 22]. This

is a goal rather similar to ours – from our perspective, a group G is a

subgroup of the symmetry group for a task if H(Y | X1) −H(Y | X)
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is small (where X1 are the G-orbits), and we can estimate H(Y | X1)

from the data1.

We may then ask two relevant questions thereof: (1) Would an algo-

rithm like in [7, 21, 22] discover an invariance in the second sufficient

case, i.e. when the posterior is not truly invariant? (2) Can we use this

to produce an algorithm that learns the symmetries of a task – rather

than simply check it? – i.e. an algorithm to find a factorization of X

that minimizes H(Y | X1).
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