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1 Lie groups and algebras; exponential map

The motivation for the theory of Lie groups comes from a fundamental topologi-
cal insight: some vague notion of “wiggle room” often has a lot of the properties
of the notion of cardinality – the classic example of this in topology is compact
spaces, which have a finite “wiggle room”, generalising how finite sets have a
finite cardinality. Even though the closed interval [0, 1] has the same cardinality
as R, it is often “visualised” in a similar way to a set like {0, 1}.

Well, the same insight should be available in group theory – for instance, the
circle group is analogous to a cyclic group, (R,+) is analogous to (Z,+), etc.
The key notion we want to make sense of this is a real-index power (that is at
least sometimes defined) on Lie groups generalising the standard integer-index
power that is available to us for free.

∗This is a quick walkthrough of some important ideas in Lie theory. For a fuller treatment
(in-progress), see: https://thewindingnumber.blogspot.com/p/1203.html (for Lie theory)
and https://thewindingnumber.blogspot.com/p/2204.html (for Topology).

1

https://thewindingnumber.blogspot.com/p/1203.html
https://thewindingnumber.blogspot.com/p/2204.html


A definition of real powers requires some notion of a parameterisation, which
exists as input to an exponential function. The interesting fact about Lie groups
is that they come with a very natural source of this parameterisation: the
tangent space at the identity.

G

g

≈ 1 + εX

≈ (1 + εX)t/ε

Figure 1: Lie algebras and the exponential map

Fig. 1 shows the intuition for why this makes sense – a group element in-
finitesimally close to the identity, 1 + εX (where X is some basis element in
the tangent space) exponentiates by a real power t/ε to the group element
(1+εX)t/ε. With infinitesimal ε, this can be considered the definition of exp tX
– and it’s easy to check that this is equivalent to the “power series” definition.

(It’s reasonable to ask how we can perform such “addition” between the
group identity and vector space elements. Well, right now, we’re considering
the group and its Lie algebra to both be embedded in some GL(Rn) – we can
then figure out what the properties are that an “abstract” Lie group or algebra
ought to satisfy.)

2 Lie bracket; Lie homomorphisms

Much of the motivation behind Lie theory has to do with translating between
ideas in the group and the tangent space – the ultimate hope is that we may be
able to equip the tangent space with enough structure that it could characterise
the Lie group (or at least its local behaviour) completely. Certainly for an
Abelian Lie group just the linear space structure suffices, as exp is a local
homeomorphism in this case. So it’s sensible to expect that the remaining
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structure in the general case has something to do with the non-commutativity
of the group.

There are two equivalent ways to see the Lie bracket – the first makes the
connection to non-commutativity more clear, but the second perhaps better
illustrates the importance of the operation in connection to the conjugation
map.

• [X,Y ] is the second-derivative at the identity of the commutator curve
etXetY e−tXe−tY . Because the first-derivative is zero, replacing t with

√
t

shows that it is a member of the Lie Algebra.

• The differential of Ad : G → Aut(G) := g 7→ λh. ghg−1 (the “Adjoint
map” homomorphism) is ad : TG → TAut(G) := X 7→ [X, ·]. One
immediate consequence of this understanding is that ad is a Lie Alge-
bra homomorphism, and thus preserves the Lie bracket: ad([X,Y ]) =
[ad(X), ad(Y )] (this is a form of the Jacobi identity).

Note that we haven’t yet abstractly defined a Lie algebra or a Lie algebra
homomorphism. When writing down Lie’s fundamental theorems, it will be
convenient to define a Lie algebra as simply a vector space equipped with a Lie
bracket (and thus a homomorphism of Lie algebras preserves this Lie bracket),
and the Lie bracket as a bilinear operator that is antisymmetric and satisfies
the Jacobi identity – but Lie’s theorems are what serve as the motivation for
this definition.

Another example of a Lie algebra homomorphism induced by a Lie group ho-
momorphism is the automorphism of conjugation on the Lie algebra, Ad(g)(X) =
gXg−1, defined as the derivative of a conjugation automorphism Ad(g)(h) =
ghg−1. This map defines the “adjoint representation” of the Lie group, al-
though only faithful iff the group has trivial center. If we want to understand
Ad(g) as a “rotation” transformation, we would need to introduce the Killing
form (in fact, for simple Lie algebras, this is the unique Ad-invariant bilinear
form up to scaling) – we can then see, e.g. that [X,Y ] (the tangent to the orbit
of Y under conjugation by a curve with derivative X at 0) is normal to X.

We can write down other examples of correspondences between Lie groups
and their Lie algebras:

• A subalgebra of a Lie algebra is the tangent Lie algebra to a a Lie subgroup
– one can confirm that it is a linear subspace closed under the Lie bracket.

• An ideal of a Lie algebra is the tangent Lie algebra to a normal subgroup
– one can confirm that i is an ideal of g iff [g, i] ⊆ i, or equivalently iff it
is the kernel of a Lie algebra homomorphism.

• The centre of a Lie algebra is the tangent space to the centre of the group
– equivalently, the largest subalgebra (in fact ideal) z such that [g, z] = 0.

It is then reasonable to ask if these implications go both ways – i.e. is every
Lie algebra homomorphism the differential of a Lie group homomorphism; is
every Lie subalgebra the tangent to a subgroup? This questions will be the
subject of Lie’s fundamental theorems.
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3 Exceptional isomorphisms

Linear algebra is really simple on the whole isomorphism question – two linear
spaces (over the same field) are isomorophic iff they have the same dimension.
Things are much harder in topology and group theory.

Well, at least with the classical Lie groups, they are easy to categorise, so
if we can define some invariants, we can perhaps decide what groups definitely
aren’t isomorphic and then worry about the remaining ones. Here are three
invariants: dimension, center, rank (dimension of maximal torus).

The classical Lie groups we are interested in are the connected ones – so
not O(n) – we can start with SO(n) , SU(n), U(n), Sp(n). The first thing
we can do is look at how rank and dimension vary in each of these series: the
rank of U(n) is always n while its dimension is n2. In SU(n), the subgroup of
diagonal matrices loses a degree of freedom, thus its rank is always n− 1 while
its dimension is n2 − 1. The dimension of SO(n) is n(n− 1)/2 while its rank –
well, you need two real dimensions to make a torus, so its rank is bn/2c. The
Symplectic group is a bit harder to visualise, but one can consider the diagonal
matrices with (1, i) entries to be a maximal torus so that the rank of Sp(n) is
n – and of course, its dimension can easily be seen to be n(2n+ 1).

Classifying by rank, this means for rank at least 4,

dim U < dim SU < dim SO(even) < dim SO(odd) = dim Sp

Well, for odd n, SO(n) has trivial center while Sp(n) has center {I,−I}. We
can then look at the finite number of groups in ranks 1, 2 and 3 and confirm
that the only cases where all three invariants are the same are:

• SO(2) and U(1)

• SU(2) and Sp(1)

In the first case, the isomorphism is simply the canonical real form of complex
matrices – in the second, the isomorphism is simply the canonical complex form
of quaternion matrices. So these cases indeed are isomorphisms. So these are
the only isomorphisms we can write of the stated groups.

One could introduce some new Lie groups by quotienting over normal sub-
groups – well, in particular it happens that all the quotients over the centres
(which are equivalently the inner automorphism groups) of the mentioned clas-
sical Lie groups: Inn(SO(n)), Inn(SU(n)), Inn(U(n)), Inn(Sp(n)) are simple.

4 Lie’s theorems: aka “Why stop there?”

There are two decisions in the definition of a Lie algebra you’ll find online that
seem rather un-motivated: (1) why is the Lie bracket the only structure you
endow the tangent space with to make a Lie algebra? (2) why are bilinear-
ity, anticommutativity and the Jacobi identity sufficient to characterise a Lie
algebra?
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The answers, as you may expect, are: (2) all such algebras are Lie algebras
to a Lie group, (1) the group (up to connectedness, coverings) is determined
by just this information. These are Lie’s third and second theorems (up to a
special case) respectively:

1. Lie’s first theorem – This refers to the relatively easy facts that (a) the
Lie algebra of a Lie group is a Lie algebra, and two Lie groups have the
same Lie algebra iff their connected components have the same universal
cover, and (b) a homomorphism of Lie groups induces a homomorphism
of their Lie algebras. The next two theorems are essentially the converse
of (b) and (a) respectively.

2. Lie’s second theorem – For a Lie algebra homomorphism L : TG →
TH, if G is simply-connected, there is a unique Lie group homomorphism
` : G→ H such that L = d`.

3. Lie’s third theorem – Every Lie algebra is the Lie algebra of a unique
simply-connected Lie group.

Together, these form the Lie correspondence. They have various conse-
quences of a similar nature, e.g. the correspondence between subgroups and sub-
algebras, normal subgroups and ideals, centers and centers, abelian Lie groups
and abelian Lie algebras, etc.

The first theorem is elementary. The second theorem can be proven quite
trivially using the Baker-Cambell-Hausdorff theorem (below). The third theo-
rem is quite hard.

Theorem 1. Baker-Cambell-Hausdorff theorem (existence): The power series
of log(eXeY ) (which is defined on some neighbourhood of the identity) is ex-
pressible purely in terms of the nested commutators of X, Y .

Proof. We reproduce the proof by Eichler (1967) [1]. Group the terms by degree
as Fn in the expansion of log(eXeY ), i.e.

µ(X,Y ) =

∞∑
n=1

Fn(X,Y )

Noting that F1(X,Y ) = X + Y and F2(X,Y ) = 1
2 [X,Y ], we will prove by

strong induction that each Fn is a Lie polynomial. Suppose that all Fm are Lie
polynomials for m < n. Then the main “stroke of genius” behind the proof is
to nest:

(eXeY )eZ = eX(eY eZ)∑
Fi

(∑
Fj(X,Y ), Z

)
=
∑

Fi

(
X,
∑

Fj(Y,Z)
)

Looking at terms of degree n only, all terms except Fn(X,Y ) + Fn(X + Y, Z)
on the left-hand-side and all terms except Fn(X,Y +Z) +Fn(Y,Z) are nestings
of Fm’s of lower degree and are thus Lie polynomials themselves. Thus the
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difference between the aforementioned exceptions is a Lie polynomial, which we
write as:

Fn(X,Y ) + Fn(X + Y,Z) ∼ Fn(X,Y + Z) + Fn(Y,Z) (1)

And ∼ can be checked to be an equivalence relation. Showing from here that
Fn(X,Y ) ∼ 0 is like a 15 puzzle of sorts. The first couple of manipulations are
at least somewhat predictable – considering the cases Z = −Y and X = −Y
respectively yields:

Fn(X,Y ) ∼ −Fn(X + Y,−Y ) (2)

Fn(X,Y ) ∼ −Fn(−X,X + Y ) (3)

One can check that applying either condition to itself transitively just yields a
trivial result. But we can apply Eq. (2) and Eq. (3) alternatingly to obtain:

Fn(X,Y ) ∼ −Fn(−Y,−X)

Since Fn is a iso-degree polynomial in X and Y of degree n, this is the same as:

Fn(X,Y ) ∼ (−1)nF (Y,X) (4)

We may also consider in Eq. (1) the cases Z = − 1
2Y and X = − 1

2Y (how
to motivate this choice – I have no clue – the thing it simplifies to isn’t very
encouraging either) and similarly apply the results alternatingly to obtain:

Fn(X,Y ) ∼ Fn(
1

2
X,

1

2
Y )− Fn(−1

2
X,

1

2
X +

1

2
Y )

− Fn(
1

2
X + Y,−1

2
Y ) + Fn(

1

2
X + Y,−1

2
X − 1

2
Y )

Simplifying with Eq. (2) and Eq. (3) in third and fourth, and second, terms of
the right-hand-side (once again, I cannot motivate this choice) respectively:

(1− 21−n)Fn(X,Y ) ∼ 2−nFn(X + Y, Y )− 2−nFn(Y,X + Y )

Simplifying with Eq. (4),

(1− 21−n)Fn(X,Y ) ∼ 2−n(1 + (−1)n)Fn(X + Y, Y ) (5)

Now successively apply Eq. (3) and Eq. (5) to Fn(X,−Y ) and iterate the result:

Fn(X,−Y ) ∼ −Fn(X − Y, Y )

∼ −2−n(1 + (−1)n)(1− 21−n)−1Fn(X,Y )

Fn(X,Y ) ∼ 2−2n(1 + (−1)n)2(1− 21−n)−2Fn(X,Y )

Confirming that this coefficient on the right-hand-side is never equal to 1 for
n > 2, this implies Fn(X,Y ) is Lie.
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5 Examples

5.1 Special Orthochronous Indefinite Orthogonal Group

Preliminary definitions and facts:

• The indefinite orthogonal group O(m,n) is the group of matrices that
preserve the Minkowski form diag(m,n)(diagonal matrix of m 1s, n −1s).

• With O(n), simply restricting to SO(n) is enough to eliminate all reflec-
tions and produce a connected group, because an even number of reflec-
tions compose to a rotation. But with the indefinite orthogonal group, we
may not want 180-degree rotations between time and space dimensions in
our “restricted” Lorentz group.

• So while we can define SO(m,n) := {A ∈ O(m,n) | detA = 1}, it is
perhaps more useful to define

SO+(m,n) := {A ∈ O(m,n) | detA = 1,detAt > 0}

The challenge is to prove that this is a group.

• There is a tedious “algebraic” proof of this in the case where either m = 1
or n = 1. But this does not generalise (see [2]).

The key idea comes from the physical insight that we’re looking for precisely the
transformations that an initially stationary observer can continuously boost or
rotate into – i.e. we need to prove that SO+(m,n) forms the identity component
of O(m,n). It is clear (from considering suitable homomorphisms) that it is a
union of connected components, and one may use the cos-cosh presentation of
the elements to show path-connectedness.

5.2 Parallel parking

Lie theory happens to be useful in control theory, where one is required to study
the motion of a system with some given degrees of freedom. An elementary
example of such a system is driving – the set of possible motions of the car
forms a Lie group. Fig. 2 shows the degrees of freedom of a car: (x, y) is
the position of the steering, φ is the angle of the car from the horizontal (to
determine the position of the back of the car) and θ is the steering angle – so
the configuration space of the car is R2 × T2.

We can study the Lie algebra of the system based on the two permitted
motions of the car. The first is infinitesimal steering, given by

Steer = ∂/∂θ

The second is infinitesimal driving, which moves the steering forward – one can
check that this pulls (x, y) forward by ε(sin(θ + φ),− cos(θ + φ)) and increases
φ by ε(− cos θ), so:

Drive = sin(θ + φ)
∂

∂x
− cos(θ + φ)

∂

∂y
− cos(θ)

∂

∂φ
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φ

θ

(x, y)

Figure 2: Degrees of freedom of a car

What’s really interesting is this:

[[Steer,Drive],Drive] = sinφ
∂

∂x
− cosφ

∂

∂y

Which is precisely the derivation corresponding to a parallel-slide. What this
means is that the following sequence of tiny motions, each with order ε:

Steer, Drive, Steer, Drive, Drive, Steer, Drive, Steer, Drive, Drive

(Where an overline represents reverse-direction) Or equivalently:

Steer, Drive, Steer, Steer, Drive, Steer

Produces a parallel-slide of order ε3. You can confirm with a pencil or something
that this is correct.

6 Summary

Here is a summary of some important insights into various Lie-theoretic ideas:

• The notion of a Lie group itself – the idea comes from wanting to gen-
eralise what we know about discrete groups to more complicated contexts
where the “manifold” structure of the group allows us to do so. Examples:
compactness generalises finiteness, one-parameter groups generalise
cyclic groups, etc.

• The exponential map – For one-parameter groups to generalise cyclic
groups, we need a “generalisation” of the group power to allow “real-index
powers”. The general way to define a real power is through the expo-
nential map. Well, this real power stuff isn’t always defined as it turns
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out (you need the exponential map to be surjective), but our motivation
does explain why it ”makes sense” that the exponential map is sur-
jective in the connected abelian case (because then, the Lie algebra
is basically a co-ordinate system on the Lie group – I’m aware exponen-
tial co-ordinates are defined in more generality, but it’s certainly more
well-behaved here).

• The Lie algebra, i.e. “why is the logarithm/parameter space the tangent
space?” We’d like to generalise the notion of a generator to a Lie group –
consider e.g. the circle group on the complex plane. An element near the
identity generates a cyclic group, and as the element goes nearer to the
identity – as it becomes an infinitesimal generator, the cyclic group it
approaches the entire group. Well, an element close to the identity is of the
form 1 + εtX, and generates a group element as (1 + εtX)1/ε = etX . This
is also intuition for the compound-interest limit, and for Euler’s identity.

• The Lie bracket is the second-derivative of the commutator curve γ(t) =
etXetY e−tXe−tY . Well, it’s also the derivative of γ(

√
t), which proves

closure under the Lie bracket.

• The real justification for the Lie bracket, however, comes from the fun-
damental fact that ad : g → Der(g) := X → [X, ·] is the differential of
the adjoint map Ad : G → Aut(G) := g 7→ λx, gxg−1, which is a group
homomorphism. In particular, the preservation of the Lie Bracket by the
differential of a group homomorphism is precisely the Jacobi identity:
ad([x, y]) = [ad(x), ad(y)]. The basic point is that we are trying to re-
duce Lie group problems to Lie algebra ones as much as possible, and
conjugation is an important idea that we’d like to see the map induced
by on the Lie algebra – we are seeing the result of the obvious fact that
TAut(G) ⊆ Der(TG) (and also TAut(M) = Der(M) – the fact that the
automorphisms of an object form a group is equivalent to the derivations
on an object forming a Lie algebra). Some more examples of the “study
the Lie algebra approach”:

– The uniqueness of the determinant as a map from G→ R− {0}.
– An ideal is a subalgebra “induced” on the Lie algebra by a normal

subgroup of the Lie group. This immediately provides the inter-
pretation as “kernels of Lie algebra homomorphisms” as well as the
condition [g, i] ⊆ i.

• The idea behind the manifold-structure of a Lie group is that the flows are
produced by left-multiplication by group elements, so those must be home-
omorphisms. This motivation can be confirmed through various topolog-
ical consequences, e.g.

– A neighbourhood of the identity generates the connected
component. The idea behind the proof is this: if an entire open
neighbourhood of the identity is contained in the subgroup, it means
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you can ”flow in any direction” from the subgroup – but to bring
these flows to an arbitrary point of the manifold, you need left-
multiplication to be a homeomorphism.

– The identity component is a (normal) subgroup. Because left-
multiplication and inversion are continuous, they cannot tear the con-
nected component apart (generalised “intermediate value theorem”),
so it is closed under multiplication.

– Compact Lie groups – How can a Lie group possibly “close in on
itself”? Surely we keep “extending” an open neighbourhood W of the
identity by observing that xW must be in the subgroup? The idea is
that these translations of W form an open cover of the group, if it
has a finite subcover, then it makes sense for the group to close in
on itself. By playing around with different open neighbourhoods W
and taking some suitable unions, one can see that this is equivalent
to the condition that every open cover has a finite subcover, i.e. the
group is compact.

– Characterisation of Abelian Lie groups – “Compact Connected
Abelian Lie Group is a torus” is a generalisation of “finite Abelian
group is a product of cyclic groups” – the idea is that the exponen-
tial map ”wraps” the Lie algebra around into the Lie group – this
just gives the quotient of the Lie algebra by the kernel of the expo-
nential map, which is topologically Rn/Zn. The characterisation of a
connected Abelian Lie group as a cylinder Rn+k/Zk follows similarly.

• Lie’s fundamental theorems, consequences of the BCH theorem,
convey the notion that nestings of the Lie bracket alone are sufficient to
determine the local structure of a Lie group (I do not have an intuitive
explanation of why this is true – of why the BCH theorem makes sense).
The “up to simply connectedness” condition can be readily understood
– it’s obvious why the Lie algebra cannot see disconnectedness; the reason
it cannot see covering spaces is that the is the quotient of its universal cover
by a discrete subgroup, and an application of the fundamental theorem of
homomorphisms and the fact that the Lie algebra of a discrete subgroup
is trivial implies our result.

• The Killing form is the natural way to define an Ad-invariant bilinear
form on a Lie algebra, in fact it is unique for simple Lie algebras. It
allows the interpretation of Ad as a “rotation” of the Lie algebra, as the
tangents to its contours are perpendicular to the radial vectors.

Stuff not covered in this text: abstract Lie theory (representations, Ado’s theo-
rem, universal enveloping algebras); infinite-dimensional Lie theory; Killing stuff
(classification of Lie groups, Cartan’s criterion); abstract algebraic things (solv-
ability, nilpotence, Levi decomposition); differential geometry on a Lie group.
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