Fancy polynomials
Orthogonal polynomials
*
* Given a dot product on functions of the form \(\langle f, g \rangle = \iint_{\mathbb{R}} w(x)f(x)g(x)\, dx\), we can consider orthogonal polynomials, i.e. of the form \(\langle f, g\rangle = 0\). A question is if we can generate sequences \(p_n\) of these polynomials of consecutive degree – such a set would then be a basis for polynomials up to that degree (do you see why?).
What we want is to pin down what \(p_n\) must be given \(p_1,\dots p_{n-1}\). What this means is trying to express the “non-leading part” of \(p_n\) in terms of these former terms. We can access a “non-leading part” of the polynomial by normalizing the polynomials to monic and considering the $n-1$-degree polynomial \(p_n-xp_{n-1}\). What are the components of this guy in the basis of \(p_1,\dots p_{n-1}\)? Well, writing
\[{p_n} - x{p_{n - 1}} = \sum\limits_{m < n} {{a_m}{p_m}} \]
Then for all \(m
$$\begin{align}
{am} &= \frac{{\left〈 {{pn} - x{pn - 1},{pm}} \right〉 }}{{\left〈 {{pm},{pm}} \right〉 }}
&= - \frac{{\left〈 {x{pn - 1},{pm}} \right〉 }}{{\left〈 {{pm},{pm}} \right〉 }}
&= - \frac{{\left〈 {{pn - 1},x{pm}} \right〉 }}{{\left〈 {{pm},{pm}} \right〉 }}
\end{align} $$
Now, \(xp_m\) has degree \(m+1\). So if \(m+1
\[{p_n} - x{p_{n - 1}} = {a_{n - 2}}{p_{n - 2}} + {a_{n - 1}}{p_{n - 1}}\]
So:
$$\begin{align}
{pn} &= - \frac{{\left〈 {{pn - 1},x{pn - 2}} \right〉 }}{{\left〈 {{pn - 2},{pn - 2}} \right〉 }}{pn - 2} + \left[ {x - \frac{{\left〈 {{pn - 1},x{pn - 1}} \right〉 }}{{\left〈 {{pn - 1},{pn - 1}} \right〉 }}} \right]{pn - 1}
&= - \frac{{\left〈 {{pn - 1},x{pn - 2} - {pn - 1}} \right〉 + \left〈 {{pn - 1},{pn - 1}} \right〉 }}{{\left〈 {{pn - 2},{pn - 2}} \right〉 }}{pn - 2} + \left[ {x - \frac{{\left〈 {{pn - 1},x{pn - 1}} \right〉 }}{{\left〈 {{pn - 1},{pn - 1}} \right〉 }}} \right]{pn - 1}
&= - \frac{{\left〈 {{pn - 1},{pn - 1}} \right〉 }}{{\left〈 {{pn - 2},{pn - 2}} \right〉 }}{pn - 2} + \left[ {x - \frac{{\left〈 {{pn - 1},x{pn - 1}} \right〉 }}{{\left〈 {{pn - 1},{pn - 1}} \right〉 }}} \right]{pn - 1}
\end{align} $$
Examples: